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Optical Effects of Energy Terms Linear in Wave Vector* 
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Energy terms linear in wave vector are allowed in the second valence band of CdS. Perturbation theory 
shows that excition states formed with holes from this band will also have a linear splitting. The effect of such 
terms on the optical properties are discussed using a spatial dispersion approach. Previous reflectivity ex
periments have some anomalous structure which is shown to be caused by the linear term. Comparing 
theory with these experiments provides an estimate of these linear terms, which have not been previously 
measured. 

I. INTRODUCTION 

SOME crystal symmetry groups allow energy terms 
which are linear in wave vector. These low-sym

metry crystals must lack an inversion center. The linear 
terms appear as zLAk, and for finite wave vector, they 
split a state which is degenerate at k = 0. Zincblende1 

and wurtzite2-4 are two examples, and there has been 
much past speculation5 on the possible effects of such 
splittings in semiconductors with these crystal groups. 
This article presents evidence of such terms in wurtzite 
CdS, and shows their effect on some optical properties. 

The conduction band and three principal valence 
bands of CdS are shown in Fig. 1. Excitons formed with 
holes from the different valence band are described as 
A, B, and C series, respectively. Each band is doubly 
degenerate at k — 0. Bands with T7 symmetry, such as 
the conduction band, allow linear terms for wave 
vectors perpendicular to the uniaxial (z) axis. In the 
conduction band,4 such terms are believed to be absent 
or at least negligibly small. They may also exist in the 
lower two valence bands, and their existence there 
explains the unusual reflectivity measurements on 
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FIG. 1. The symme
tries of the conduction 
band and the three 
principle valence bands 
of wurtzite crystals, such 
as CdS. 
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excitons states whose holes are from these bands.6 The 
attempt to understand the origin of the anomalous 
structure of the reflectivity curves was the motivation 
for examining the effects of the linear terms. 

Figure 2 shows the measured reflectivities6,7 of the 
principal B series exciton state in CdS. Of the three 
different experimental geometries, only k±z and EJLZ 
shows the extra shoulder of interest. This anomaly has 
three principal characteristics: 

(1) It appears near the transverse frequency. 
Contrast this with the extra peaks in the A series 
exciton6 spectra, which appear at the longitudinal 
frequency, and are caused by surface effects. This fact 
suggests that the explanation for the two phenomena are 
quite different. 

(2) The structure is only observed for kl.zy and not 
for k\\z. For E±.z, the k —•> 0 symmetry of the Is exciton 
states for k±z and k\\z is the same, T5. The existence of 
the linear splitting for kl_z, but not for k\\z, easily 
explains this observed directional dependence. 

(3) When k±.z, the structure is observed for E±z 
(r5), but not for E\\z (Ti). Both transitions are allowed 
by group theory, and both modes of polarization form Is 
exciton states which are easily observed in good crystals. 
This polarization effect, which was originally a puzzling 
feature, is explained in Sec. II. The linear wave terms 
mix the rx state with the longitudinal exciton,8 which 
eliminates the linear wave vector term in the energy of 
this state. The theory of exciton states in CdS, including 
the effects of linear wave vector terms, is developed in 
the next section. 

In Sec. I l l , the reflectivity is calculated using the 
spatial dispersion formulation of Pekar.9 The nonlocal 
effects are included using an extension of the classical 
interpretation which has been recently suggested.6 The 
split exciton band is simply represented by two polariza
tion waves. The optical properties of the exciton state 
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are accounted for by having three independent prop
agating modes in the crystal, each characterized by a 
different refractive index. In a local theory there would 
only be one mode. 

The effective mass of the B valence band are needed 
to calculate the reflectivity. These have not been meas
ured, but may be estimated from a knowledge of the 
A -band masses, which is done in the Appendix. 

II. 5-SERIES EXCITONS 

In wurtzite structures such as CdS, each valence and 
conduction band is doubly degenerate at & = 0. In the 
k«p perturbation calculation to determine the effective 
masses of a band, the only off-diagonal elements in the 
two-dimensional matrices are terms linear in wave 
vector.2-4 Since these were found not to be important 
for A -series excitons,4 the optical theory could be 
formulated using a scalar Hamiltonian.6 This simplifica
tion is one reason why exciton theory in CdS has been 
able to be developed extensively. For B- and C-series 
excitons, these off-diagonal terms must be included, 
requiring use of the matrix formulation. 

There are two independent eigenfunctions Bj(k) which 
satisfy (2.2) and (2.3), giving two-electron wave 
functions in (2.1). The eigenvalues of (2.3) are easily 
found by diagonalization 

\=Eg+ (¥/2meX) (kx
2+ky

2)+ (¥/2mu)k
2 

± C ( W + W 8 . (2.4) 

For wave vectors perpendicular to the z axis, 

* i= (W+V) 1 / 2 , 

the conduction band may exhibit a linear splitting at 
ki—>0. But measurements indicate that no splitting 
exists in the conduction band,4 and C is zero, or small 
enough to be neglected. 

The k- p Hamiltonian for the top valence band, which 
has a different group symmetry, lacks the off-diagonal 
terms. Only the quadratic terms in (2.4) are present. 
When discussing excitons from this band, the resulting 
four-dimensional matrix Hamiltonians has four equal 
diagonal elements. These are the sum of the diagonal 
term of (2.3) for the conduction and valence bands plus 
the Coulomb interaction terms. This Hamiltonian has 
been analyzed in detail.6 One choice of center-of-mass 
coordination allows the diagonal Hamiltonian Ha to 
be expressed as an isotropic part Ho plus an anisotropic 
correction Hi, Hd=Ho+Hi. H0 may be viewed as the 
unperturbed Hamiltonian, and its eigenstates are 

0.51 1 1 [—I 1 1 — T - | 1 r 

2.566 2.570 2.566 2.570 2.566 2.570 

Energy (eV) 

FIG. 2. The reflection spectra of the Is B series exciton in a 
single sample of CdS from Hopfield and Thomas, (a) k\\z, E±z, 
(b) kJLz, E±z, (c) k±z, E\\z; only (b) shows effect. 

Electrons in the conduction band have the wave 
function 

^(r) = E 5 y ( k ) M r ) , (2.1) 

where ^k(r) are the Bloch functions, and the Bj(k) 
satisfy 

hydrogenic, characterized by an average dielectric 
constant eo= (ej.€n)

1/2 and an average effective mass 
Mo~1=|Mi~"1+iMir1- Hi has as a factor an anisotropy 
constant 7, 

T = MO[MI~1— ( e i / e n V i r 1 ] . 

Since 7 is small (7^0.2 for A series, 7^10~~2 for B 
series10), the choice of center-of-mass coordinates is 
justified, and the ground-state wave functions will be 
hydrogenic. 

The lower two valence bands have the same irreduc
ible representation as the conduction band, and their 
k-p Hamiltonian must be similar to (2.3), with just 
different constants mh^ mhu, and C. Postulating that 
the energy terms linear in wave vector are small 
compared to exciton binding energies, the off-diagonal 
terms in the exciton Hamiltonian matrix may be 
treated as a perturbation. This causes a linear splitting 
in the exciton Hamiltonian, and mixes the exciton state. 

A suitable set of eigenstates must be chosen in order 
to represent the four-dimensional matrix. The two 
s-like conduction-band states may be identified by just 
the spin, ac and ft. Approximate eigenfunctions were 
previously obtained for the hole bands.11 The wurtzite 
valence band structure near k = 0 may be approximated 

10 See Appendix. 
11 J. J. Hopfield, Phys. Chem. Solids 15, 97 (1960). 

He(k)ijBj(k)=(\-Eg)Bi(k), 

/ (h2/2mel) (kx
2+ky

2)+ (h2/2fneuW c(kx+iky) \ 
He(k) = [ 1 

\ cOL-iJU (h2/2mel) (k*+k*)+ (h*/2men)k*/ 

(2.2) 

(2.3) 
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by introducing spin-orbit interaction-and a (111) strain 
into a zincblende valence band. Perturbation theory-
then relates the wave functions of the three bands. The 
top band are 7=f, Mj=-±% states. The states for the 
B band are 

|A*, +) = NBL(2-3\B/5)zah- (x+iy)(3h~], 

\\B,-) = NBl(2-3\B/8)zPh+(x-iy)ahl, 
^ = [ 2 + ( 2 - 3 X B / 5 ) 2 ] " 1 / 2 . 

(2.5) 

The C band is the same as (2.5), with Xc replacing \B. 
The measured energy splittings of the bands beneath 
the A band12 are \B = 0.016 eV and Xc= 0.073 eV, and 
the spin-orbit splitting is 5=0.060 eV. Only excitons 
from the B band are sufficiently resolved to allow the 
effect of the linear term to be observed in optical 
experiments. Since the lower two valence bands have 
identical group symmetry, the same calculation applies 
to either band. In principle, the C band should show the 
same effects. The two states of a valence band will be 
labeled | ± ) , and the results apply to either the B or 
C band. 

The symmetry of the exciton states is found from 
the product of the representations of the conduction 
band (r7), the valence band (T7), and the hydrogenic 
state. Only the Is hydrogenic state is easily observed 
optically, and its symmetry (r"i) will be used. FiXr7 

X r 7 = r i + r 2 + r 5 . The r 5 representation is two dimen
sional. The four exciton states forming a possible basis 
of the matrix Hamiltonian are 

/«c|+>\ 

T i : ( l /v2)[ac|->+/?c|+>], 

T2: (l/^)C«c|->-/5c|+>]. 

(2.6) 

(2.7) 

The interesting effects occur for wave vector components 
perpendicular to the z axis. For simplicity we set kz=0, 
and worry only about the principal geometries of E\\z 
and E±_z. For k±z, the r 5 has a transverse (r5r) and 
a longitudinal (T^L) state. The optical dipole transitions 
allowed by group theory are to I V (E±z) and ri(E||js). 
The reduction of the T5 state to its longitudinal and 
transverse components depends upon wave vector 
direction. Select k = ky, but the results will apply to 
any wave vector in the (%,y) plane 

T5r: ( l / ^ ) [«c |+>- j8c l -> ] , 
T6L: ( 1 / V 2 ) M + > + / 3 C | - ) ] . 

The four states (2.7) and (2.8) are chosen as the basis 
for the excitons matrix Hamiltonian. It is convenient to 
use the ordering \f/2i far, $5L, ^ I . 

(2.8) 

He exciton 

(Hd 

V 
0 

.0 

V 
Hd 
0 
0 

0 
0 

Hd+A 
V 

0 
0 
V 

Hd 

(2.9) 

A2 _D. G. Thomas and J. J, Ropfield, Phys. Rev. 116, 573 (1960). 

V is the off-diagonal term from the valence band which 
is linear in wave vector, 

V^cph, (2.10) 

(p=Cmhl/(mei+mhi). (2.11) 

<p is the exciton splitting parameter. Here only the 
center-of-mass part of V has been retained, and the 
exciton relative coordinate parts have been set equal 
to zero. These relative terms will mix the Is state 
with other hydrogenic levels,4 but these effects are not 
important here. The additional term A in (2.9) rep
resents the splitting of the longitudinal exciton8 above 
the transverse state. Long-range Coulomb interaction 
raises its resonance frequency above that of the trans
verse state, and this may be represented by the diagonal 
constant A in this basis. 

The linear interaction V mixes the ^2 and ^6r states 

«±= So(K)±<pKx, * ± = ( 1 / V 5 ) ( ^ 5 T ± ^ ) V (212) 
So(K)=So(0)+¥K^/2mx. 

The ^5L and ypi states are also mixed, with eigenvalues 

£± '= £<)(#)+ (A/2)±[(A/2)2+\p*K?Jl\ (2.13) 

The constant <p is small (^10~9 eV-cm) and A~10~3 

eV; for wave vectors of interest, i ^^ lO 5 cm-1, so that 
A^xpK±. To lowest powers in Kx/A, the states are 

<V~ So(K)+A+ v2K?/A, t+'^iL+tivKi/A, 
«-_'« SQ(K)- cp'Kf/A, fJ™ti-fiL<pKi/A. 

(2.14) 
Because the longitudinal-transverse exciton splitting is 
so large, the states \j/i and ^5L do not mix appreciably, 
and neither has a linear splitting. Consider the two 
allowed transitions: For EA_z, the exciton band will be 
linearly split at iTj.= 0; for E\\z, there is no linear 
splitting. This is what is observed experimentally. It 
should be emphasized that the results (2.12), (2.13), 
and (2.14) are true for any wave vector in the (kx,ky) 
plane. 

For kA-Z and E\\z, (2.14) shows that the linear term 
does contribute to the exciton mass. The energy is 
(*.=0) 

h2kx
2r 1 2^2n 

S'=S0(0)+ . 
2 LWJL Ah2J 

The quantity ^2A/2<^2-1.3Xl0-27 g, so that the 
resulting mass correction is appreciable. This surprising 
result implies that for kl_z, the exciton mass in the 
lower valence band depends upon the polarization of 
the exciting electromagnetic field. If this difference 
could be detected experimentally, it would provide the 
most direct method of measuring the linear crossing 
constant. 

III. REFLECTIVITY 

The ordinary local theory of optical experiments is 
inadequate in calculating the reflectivity of this system. 
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Instead, one must use the spatial dispersion theory-
introduced by Pekar. Here a separate polarization wave 
is associated with each of the two components of the 
split exciton band. At optical frequencies near the 
resonance frequency both polarization modes are 
important. When the coupling to the electromagnetic 
field is introduced, three independent modes of prop
agating energy result. 

The refractive indices for the three modes are found 
easily by a classical analysis. Label the two polarization 
modes P ± . 

1 a2 d2 

[eo£+47r ( P + + P - ) ] = — E , 
C2 dt2 dx2 

fh 6 

(3.1) 

r [h d v n 
\SJ +h2- \P±=0±S(O)2E, (3.2) 
L \i dx/ dt2A 
S±(kx)=S(0)+(h2kx

2/2m)±<pkx. (3,3) 
Since only the leading terms of k are important in (3.2) 
set 

«± ' ( f t a f )
2 =5(0) 2 +2«(0)[ ( f t 2 W/2f»)±^J . (3.4) 

Defining,/30 as the polarizability constant for the exciton 
band for <p=0, then p0=p+/2 = p-/2. This follows from 
the definition of 0o as proportional to the square of a 
matrix element 

M<*±|ff'|o>|s 
arid from (2.12) for \p±; Hf is the transverse electro
magnetic interaction. 

For a plane solution, with P±, E^exp (iu/c) (nx— ct), 
(3.1) and (3.2) become 

Y 
2 \ * 

1 1 

i?—fji+an n2—\x—an 

b-47rl3o\jnc2S(0)/h2^2'], 

• ) • 

L h2o>2 J I L 

#C0 H 2 

S(0)J 
-ir-

ha) 

spy }• 
(3.5) 

I 
FIG. 3. The electric field 

amplitudes for three bulk 
propagating modes; (a) 
without a surface layer; (b) 
with a surface layer, the two 
modes T0 and Ro see a di
electric constant eo« 

(a) 

• L , 

1R< 

x = o X = Xn 

(b) 

Once the refractive indices are known, there remains 
just the boundary problem of matching amplitudes at 
the surface. The modes for the reflectivity problem are 
shown in Fig. 3(a). Including the boundary layer from 
which the polarization wave is excluded,6 the modes 
appear as in Fig. 3 (b); here, the modes To and P 0 in 
the surface layer see a background dielectric constant 
6 0 = WO2-

Two boundary conditions are needed in addition to 
the Fresnel condition that E and H be conserved. 
These are that P + = P _ = 0 , which applies at the surface 
layer x=x 0 , Fig. 3(b). In particular, P + = 0 at x=Xo 
is 

3 

o=E 
Ta(Xo) 

«==i na
2-~iJL+ana 

For P_, replace a by —a. The reflectivity is 

\Ai—A2+ino(Ai—A2/eo) tan(wowx0A) 
R= 

a= (2mc2/h2co))<p. 

Now (3.5) is a cubic equation for n2,> 

w 6 -^(€o+2 A t+a 2 )+w 2 [€o(2 M +a 2 )+ M
2 -&] 

which may be solved to give the refractive indices for 
the three modes ni2, n2

2, and n£. 
Call Pi, P2 , Tz the electric field amplitude of the 

three bulk propagating modes, corresponding to the 
solutions ni, n2, %z of (3.6). The total internal electric 
field is 

Ai~\-A2~ino(A1+A2/e0) tan(noosx0/c)I 

^4i=— a2fx—ix2+ix\jii2+n2
2+nz2+nin2+nins+n2nz^ 

+tiin2nz(ni+nd+nz), 

M(€PM— b) = 0, (3.6) A2=fJL\jiiz+n2
z+nzz+n2

2(ni+nz)+ni2(n2+nz) 

+ W32(Wl+W3)+WlW2^3] + Wl^2W3[Wl2+W22+W32 

+nifi2+n2nz+nznf\~ (a2+2ju) 

X \ji (ni+n2+nz)+nxn2n{\. 

E(x) = j : TaWir*"', 

Ta (x) = Ta (0) expZitta (cox/C)]. 

(3.7) 

In order to calculate the reflectivity, it is necessary to 
know the parameters pertaining to the B exciton. These 
were usually known only approximately. An effort 
has been made to estimate them realistically; in the end, 
one would like to have <p the only unknown parameter, 
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2.566 2.570 

Energy (eV) 

FIG. 4. The theoretical effects of increasing linewidth on Is B 
series exciton spectrum for k±z, E±z. (a) r = 2.5X10 -5 eV, the 
peak at the longitudinal frequency is present at this small width; 
(b) r = 7.5X10~5 eV; (c) r = 2.5X10~5 eV, the extra structure is 
being washed out at increased linewidth. 

and to be able to determine it by comparing the 
calculated and the measured reflectivity curves. The 
other input numbers and their method of evaluation 
is outlined below: 

1. Resonance frequency. Because of the structure in 
the reflectivity spectra, the classical Kramers-Kronig 
version gives the wrong value for the transverse 
frequency. Calculations with the crossing term included 
show that in the absence of damping, the low point of 
the anomalous dip is at this resonance frequency. 
Damping tends to wash out this minimum, but the 
measurements indicate that this frequency is 2.5679 eV. 

2. Exciton mass. These are derived in the Appendix. 
The values used in the calculations are ^ + ^ = 1 . 3 
and JUO= 1.7. The reduced mass turns out to be the same 
as for the A -series exciton, so that the binding energies 
and Bohr radius of the two series are roughly equal. 

3. Polarizability /?. Because of spatial dispersion 
effects, interpreting the reflectivity curve as a classical 
spectra gives the wrong value for ft. However, it may be 
predicted by relating it to the polarizability for the 15^4-
series exciton 13(A). Assuming that the Bohr radius for 
the A- and ^-series excitons are equal, the two polar-
izabilities differ only in their band to band matrix 
element. These may be estimated from (2.5) and 

P(B)=p(A} 
2+(2-3\B/d)2 

Since 47T/3 (A) = 0.0125 ;6 then /3 (B) = 0.00058. The values 
0.00060 and 0.00065 have been used in the calculations. 
The latter number gives a slightly better fit to the 
experimental data, but the uncertainty in the other 
parameters precludes selecting either value as more 
reasonable. 

4. Linewidth. Calculations on the A -series excitons 
show that the sharp subsidary peak occurs at the 
longitudinal frequency for linewidths less than 5X10~5 

eV. Since the B exciton has the same Bohr radius, it 
should feel the same potential and the reflectivity 
spectra should show the same peak. Since this is not 

observed experimentally, the ^-series exciton must have 
a larger linewidth. This is reasonable, since the B state 
has all of the decay modes of the A state, plus the 
additional possibility of decaying to the lower energy A 
state. A rough calculation was made of the decay rate 
from the B to A state with the spontaneous emission 
of an acoustical phonon. The main contribution is from 
deformation potential interaction, and the process 
contributes a linewidth of the order of 10~5 eV, which 
may account for the increase. Figure 4 shows theoretical 
reflectivity curves for values of 2.5X 10~6 eV, 7.5X 10~6 

eV, and 25X10~5 eV. The value r=7.5X10~5 eV is 
large enough to wash out the subsidary peak, and is 
used in the remaining calculation. 

5. Surface layer thickness. A surface layer of 70 A was 
arbitrarily selected for the calculations. The results 
change little for values of this parameter between 0 and 
100 A, since the effect does not depend upon the 
presence of the layer. 

Using these parameters, (p can be varied to see the 
effects of the linear crossing on the reflectivity. Figure 
5(a) shows <p=0 (dashed line) and ^=0.3X10~9 eV-cm 
(solid line), while Figs. 5(b) and (c) have 0.5X10"9 

eV-cm and 0.8X10"9 eV-cm. Figure 5(b) represents the 
experimental curves quite well, so that <p~0.5X10~5 

eV-cm. From the uncertainty of all of the other param
eters, the uncertainty on this value may be as high as 
50%. The important result is that the presence of such 
small crossing terms can explain the anomalous features 
of the reflectivity. Since these have never been measured 
previously, the fact that they are finite has been 
established, and a tentative value presented. This value 
is in agreement with previous theoretical estimates.4 

The reflectivity can be explained by the presence of 
the linear crossing term. The main argument which 
could be made against the explanation is that it is not 
unique: other forms of band structure could possibly 
lead to the same reflectivity curves. An identical set of 
calculations was made on a system which looks quite 
similar—-this is where the bands split quadratically. The 
two bands have masses m.\ and m^ and associated with 

2.566 2.570 

Energy (eV) 

FIG. 5. The theoretical effect of increased linear splitting on the 
reflectivity spectrum, (a) <p = 0 (dashed line) and ^ = 0.3X10~9eV-
cm (solid line); (b) ^=0.5X10-9 eV-cm; (c) <p=0.SX10r» eV-cm. 
The middle value appears as the most reasonable fit to the 
experimental data, Fig. 2. 
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each band is a polarization wave. This system will also 
have three propagating modes, and the boundary 
conditions P i = J P 2 = 0 are applied as before. Reflectivity 
curves were calculated for a wide range of m\ and m^ 
but none led to the type of structure observed experi
mentally. It is concluded that the linear crossing term 
must account for the effect. 
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APPENDIX 

The effective masses of holes in the second valence 
band, which are needed for the reflectivity calculation, 
have not been measured. But using a k»p perturbation 
model which relates the three valence bands, the B 
band masses are estimated from a knowledge of the A 
band masses. Without this relationship, each band 
would have the form (2.4) and its own set of independ
ent constants; of course, for T9 bands C=0. 

The scheme employed to relate the constants for the 
different masses is to view wurtzite as a strained zinc-
blende material. This model was previously used to 
estimate oscillator strengths in CdS.13 By simultaneously 
introducing the strain and spin-orbit interactions into a 
sixfold degenerate zincblende valence band, a wurtzite-
type structure with the three doubly degenerate bands 
results. The valence band states which result are those 
given by (2.5). The masses may be obtained by also 
introducing the k«p perturbation matrix, appropriate 
for zincblende. The linear wave vector terms do not 
contribute to the masses and are omitted. The most 
general form for quadratic wave vector terms is 

(Al) 

Including spin degeneracy causes (Al) to appear twice 
in a sixfold representation. One way of rinding the 
masses is to include (Al) in the simultaneous diagonal-
ization of the spin-orbit and strain terms. Although 
this is possible, the result is not simple enough to be 
useful. An easier method is to transform the k«p 

13 G. Dresselhaus, Phys. Chem. Solids 1, 14 (1956). 

TABLE I. Masses for the various bands. 

'Dk,*+GP 
•T rO xfvy 

Fkxkz 

V fvxfvy 

Dky2+Gk2 

Fkykz 

JO Ki xfv z 

J? Ryf&z 

Dk*+Gk2 

Bands 

A band: 
m\\/m~g~l 

nn/m=(g+d/2)~l 

B band: 
W n / m = [g+di\rB2(2_3Xzj/5)2]-i 
mi/m = [_g+dN B2~yi 

C band: 
mu/m = Lg+dNc2 (2 -3\c/8y2~l 

mi/m^lg+dNc?]-1 

g = 0.333 
d=2.20 

3.0 
0.70 

0.79 
1.03 

0.62 
1.25 

£=0.20 
d=2A6 

5.0 
0.70 

0.81 
1.09 

0.62 
1.39 

g = 0 
tf=2.86 

CO 

0.70 

0.83 
1.20 

0.61 
1.65 

perturbation to a matrix with basis states given by (2.5). 
Since the transformation is linear, the wave vector 
terms will still be of order k2 in all matrix elements. The 
off-diagonal terms are only important when wave 
vector-dependent mixing of the basis states occurs. This 
effect may be ignored for small wave vectors, so that 
the diagonal elements determine the masses. They are 

riband, EA = XA+(D/2)(kx
2+ky

2)+Gk2, 

B band, EB=XB+DNB
2{kx

2+ky
2 

+ t2-(3\B/8)Jkz2}+Gk2, 

C band, Ec=Xc+DNc2{kx
2+ky

2 

+ £2-(3\c/t>)Jkz2}+Gk2. 

Note that the constant F of (Al) does not enter into 
the band masses. Only two constants, D and G, deter
mine all six masses, and these may be found from the 
two masses of the top valence band. The perpendicular 
mass is known,6 mi=0.70m {m— electron mass), and 
the parallel mass is estimated mu^5m. The B and C 
band masses are listed for A -band parallel masses of 
3.0, 5.0, and <*>. Define d=(2m/h2)D, g=(2m/h2)G, 
and the results are listed in Table I. 

For excitons from the B valence band, the following 
parameters may be estimated: 

Mo=0.17, 
mex+Mhi=1.2-^ 1.4, 

7=10"2. 

The measure of the anisotropy y is very small, and 
the isotropic Hamiltonian approximation is very good. 


